

“PhaseImpute” an NF-Core pipeline for genetic imputation

Louis LE NEZET1, NF-Core community, Pascale QUIGNON1 and Catherine ANDRE1

1 UR1 - CNRS, ERL Inserm U1305 - UMR6290 IGDR (Institute of Genetics and Development of Rennes) - 35000 Rennes,

France

Corresponding Author: louis.lenezet@univ-rennes.fr

Keywords

New Generation Sequencing (NGS); Genetic imputation; Nextflow; Open-Science

Abstract

Genotype and low coverage sequencing data provide cost-effective avenues for genomic research but

inherently exhibit the limitations of being low resolution and low quality respectively. This sparsity in

genetic data poses challenges, particularly in non-model organisms lacking species-specific phased

panels, necessitating accurate haplotype phasing for effective downstream analyses. Genetic

imputation serves as a valuable tool to supplement these methods by completing missing data and

assigning probabilities to variant observations, thus enhancing data resolution and quality. However,

ensuring the reliability of imputed genotypes requires rigorous tool validation and thorough

exploration of parameter impacts (e.g. sliding window size, effective diploid population size, number

of burn-in iterations, …), critical for maximising the utility of these techniques in genomic studies.

To tackle these challenges, we introduce a NF-Core compliant pipeline tailored for phasing, imputation,

and validation of the imputed data. Our pipeline equips users with advanced genomic analysis tools

for phasing and imputation analysis. This enables them to leverage the full potential of their genetic

data by filling in missing information, harmonising datasets, and enhancing the resolution of genetic

analyses. By adhering to NF-Core guidelines, our pipeline ensures users have access to a suite of high

standard, versioned, and rigorously tested up-to-date tools, developed within a large and helpful

community - a crucial aspect for FAIR (i.e. Findable, Accessible, Interoperable, Reusable) analyses.

In summary, our dedicated NF-Core pipeline offers a comprehensive solution for genomic imputation,

covering phasing, target file imputation, and imputation quality validation stages. Using this pipeline

streamlines researchers' genomic investigations, harnessing innovative tools to ensure dependable

imputation outcomes across various model and non-model species. Furthermore, by adhering to FAIR

principles, they contribute to standardised, reproducible, and community-supported genomic

analyses.

Introduction

Sparse genetic data pose both opportunities and obstacles in genomic research. It offers a cost-

effective means to study large populations, facilitating broader investigations into genetic diversity

and disease susceptibility [1,2]. Genotyping micro-array has historically been the primary tool for large

genome-wide association studies. While the number of variants study through those micro-array are

limited (i.e. from 240k to 4M variants [3]) the confidence in the genotype observed is high. On the

other hand low-coverage Whole Genome Sequencing has recently emerged as a viable low-cost

alternative [4,5]. However, the increase in the number of variants observed comes at the cost of a

reduced confidence in their genotypes. A low resolution as well as poor genotypes quality can hinder

accurate analysis, particularly for rare variants or to elucidate complex genetic mechanisms [6].

Phasing and imputation techniques emerge as essential strategies to overcome these challenges.

Phasing involves determining the parental origin of alleles, reconstructing the haplotypes present in

an individual's genome. It allows to accurately predict missing genotypes (i.e. imputation) by

leveraging the correlation patterns between known and unknown variants within haplotypes. Phasing

can be done de novo with high coverage data or using an already phased panel of variants from

multiple individuals as a reference [7]. However, access to a phased panel is not always possible when

working with non-model species and the phasing and pre-processing steps are challenging due to the

absence of clear best practices. Variability in data quality and format, coupled with numerous phasing

algorithms and parameters, complicates the use of phasing techniques. Additionally, the lack of

standardised guidelines for quality control measures and the need for scalability in handling large-scale

datasets add further complexity to this step.

Imputation leverages known haplotype information to predict missing genotypes, effectively filling in

the gaps in sparse genetic datasets. These techniques, often based on probabilistic approaches using

Hidden Markov Models [8], provide likelihood scores for imputed variants, necessitating consideration

of these posterior probabilities in subsequent analyses [6]. To address the usage limitation of genotype

likelihood, researchers can adopt a hybrid approach, where a subset of individuals is sequenced at high

coverage to ensure reliable genotype data for specific analyses. Meanwhile, the remaining individuals

can be sequenced at low coverage, providing supplementary data for comprehensive analysis. This

strategy allows for the acquisition of both high-quality genotype information and broader coverage

across the sample population.

Implementing phasing and imputation workflows presents unique complexities. Researchers face the

challenge of navigating multiple software tools, each with its own dependencies and compatibility

requirements. Popular phasing tools include “Shapeit5” [9] and “PHASE 2” [10] but also “wphase” [11],

“HAP2” [12], “PL-EM/triple” [13] or “Eagle2” [14]. Imputation software use will depend on the type of

input data. For genotyping micro-array data, the Beagle5 [15] software is widely used by the

community as well as “Impute5” [16] and “Minimac4” [17], whereas for low-coverage whole genome

sequence, data is process with an available phased panel with: “Beagle5” [15], “Quilt” [18],

“Glimpse2”[19]; or without one with : “Stitch”[20]. This choice complexity added to an absence of

standardised environments complicate the installation, integration, and reproducibility of analysis

pipelines. Moreover, some of these pieces of software are not user-friendly and the lack of

documentation, the high computational loads, the susceptibility to batch artefacts and the limited

availability of phased panel [6] hinder the adoption of phasing and imputation techniques in genomic

research, highlighting the need for robust, user-friendly solutions.

Nextflow, a workflow language implemented in Groovy designed for scalable and reproducible

scientific workflows [21], emerges as a promising solution to address these challenges. It uses a

dataflow programming model that connects process nodes through channels allowing to easily

parallelise huge data across chromosome or individuals. With built-in support for containerisation

technologies like Docker, Conda and Singularity, Nextflow streamlines the development and

deployment of complex genomic workflows. Its compatibility with popular cloud computing platforms

allows researchers to leverage scalable computing resources for large-scale genomic analyses.

However, some limitations have been pointed out, such as the learning curve and obscure error

messages for users not familiar with dataflow programming language. Additionally, the absence of a

central repository of tools, reference vocabulary, easy visualisation of the data flow, and GUI has been

described as major limitations [22]. To overcome these drawbacks, the NF-Core community has made

significant progress in recent years [23].

Indeed, the NF-Core community plays a pivotal role in advancing genomic analyses through

standardised tools, processes and workflows written in Nextflow through collaborative efforts. By

adhering to NF-Core guidelines, researchers benefit from validated, versioned, and community-

supported pipelines, ensuring the reliability and reproducibility of genomic analyses [23]. To date,

more than 50 high standard pipelines have been developed, most focusing on genetics, but with an

increasing number being developed for other scientific fields. We can cite the most famous one nf-

core/rnaseq “to analyse RNA sequencing data” [24] and nf-core/sarek “to detect variants on whole

genome or targeted sequencing data” [25].

Considering these factors, the development of a dedicated NF-Core phasing and imputation pipeline,

tailored to the unique demands of genomic analyses, became increasingly important. Such a pipeline

would integrate state-of-the-art phasing and imputation algorithms, provide seamless compatibility

with existing genomic datasets, and adhere to FAIR (i.e. Findable, Accessible, Interoperable, Reusable)

principles to promote transparency and reproducibility in genomic research.

Materials and Methods

Creation

NF-Core/PhaseImpute is a Nextflow pipeline that has been developed using the NF-Core tools [23].

The pipeline is constructed following the template of NF-Core, specifically version 2.13.1, which by the

means of the python « nf-core » tools streamline folder organisation, file creation, and configuration,

as well as facilitates Continuous Integration workflows for Git. This pipeline, initially empty, is written

in DSL2, an updated version of the Nextflow language that enhances modularisation processes.

Subsequently, modules, subworkflows, and the final workflow are iteratively added. NF-Core

guidelines advocate for a single tool per module, thereby enhancing code creation, updating,

versioning, and sharing. Interconnections between modules are facilitated through subworkflows,

which can be aggregated into a cohesive workflow structure. All sub-tools of Glimpse (version 1 and 2)

and ShapeIt (version 5) have been integrated to the NF-Core repositories. Corresponding

subworkflows using these tools are readily available for utilisation. Moreover, all tools are

encapsulated within bio (Conda) environment and have their singularity and docker counterparts. This

ensures a highly reproducible environment, guaranteeing consistent outputs for a given set of tools

and data. The metro-maps presented below all have been generated with the draw.io software [26].

Data set

To assess the performance and conduct unit tests for all components of the pipeline, a dedicated data

set repository has been established using data from the 1000 Genomes Project [27]. Specifically, the

“1000G_2504_high_coverage” phased panel containing SNV and INDEL call sets from 3,202 high-

coverage samples sourced from Byrska-Bishop et al [28] has been used. They are accessible at:

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/2

0201028_3202_phased/. Subsequently, subregions of chr21 and chr22 between 16,57Mb-16,61 Mb

have been selected from this panel, hence creating a lightweight data set of variants and significantly

reducing computing time during pipeline development and testing. Both regions have been chosen as

there are the ones used for testing by the GATK software and the NF-Core community. Three

individuals, including one used in the Glimpse1 tutorial [29] and two other individuals, were selected

for testing, namely NA12878, NA19401 and NA20359.

The distance matrix which reflects the genetic distance between pairs of individuals has been

computed based on identity by descent. This was done for all 3230 individuals within the panel using

PLINK (version 1.90b6.21) [30] with the --genome option, with variants filtered out when harbouring

more than 20% missing genotypes (--geno 0.02) and a minor allele frequency below 1% (--maf 0.01).

This allows to quantify the genetic similarity between pairs of individuals based on the proportion of

their genome inherited from common ancestors. Individuals NA12878 and NA19401, each have 2

related individuals with an estimate kinship value greater than 0.2 inside the reference panel, while

NA20359 has none. To ensure accurate evaluation of imputation performance, these four related

individuals have been excluded from the reference panel along with the three selected individuals.

The high-coverage Compressed Read Alignment Map file (CRAM) of the three selected individuals has

been retrieved and the corresponding subregions have been extracted. Genotypes has been computed

from these individual files using the “mpileup” and “call” tools of “bcftools” (version 1.17) [31], serving

as a validation file. This step reproduces what is done in the Glimpse tutorial. Additionally, the original

CRAM files have been down-sampled to 1X to simulate low-pass data using the subsample option of

the view command of “samtools” (version 1.17) [31]. Furthermore, genotypes from the SNP positions

used in the Affymetrix microarray, encompassing 1,837k SNPs and Copy Number variants, have been

extracted using PLINK from the called variants to simulate genotyping micro-array data.

Computational environment

All evaluations were conducted on a shared High-Performance Computing (HPC) cluster using a Slurm

Scheduler on the Genouest bioinformatic platform (www.genouest.org). The computational

environment was configured using mamba (version 1.5.6) and the environment specification file is

available in the pipeline repository. This environment file includes openjdk (version 17.0 or higher),

nextflow (version 23.10 or higher), singularity (version 3.8 or higher), nf-core (version 2.13 or higher),

prettier (version 3.0 or higher) and nf-test (version 0.8 or higher) ensuring consistency and

reproducibility across users. All softwares versions used during computation in the pipeline are made

available in an “MultiQC” [32] html file.

Results

An overview of the pipeline is shown in Fig 1. The input data comprise a sample sheet in comma-

separated value (CSV) format. This file contains the names of the target individuals as well as the paths

to their genetic files (e.g., VCF, BCF, BAM, CRAM) and corresponding indices (e.g., TBI, CSI, BAI, CRAI).

The pipeline features multiple entry-points, enabling various types of analyses, each generating a CSV

sample sheet for subsequent analyses. The pipeline encompasses four steps: reference panel phasing

and pre-processing, imputation of the target files, simulation of target files and finally concordance

analysis between ground truth and imputed files. Each step can be executed individually by appending

the following argument to the command line “--steps <panel_prep/impute/ simulate/validate>”. The

tools can be chosen in a similar way with “—tools <glimpse1/glimpse2/stitch/quilt>”. The pipeline uses

a reference genome given by the user and is therefore agnostic to the species study. The only limitation

is that the data need to be diploid.

Each tool run by the pipeline can be easily configured by adding external arguments through “.config”

files. For example, the imputation can be fine tune by adding “--ne 100” to the GLIMPSE1_phase

process to explicit the effective diploid population size or by adding “--window-size 200000” to

the GLIMPSE1_chunk process to increase or decrease the window-size. The more impactful

parameters are also available as pipeline level parameter (i.e. prefix with “--”) and can easily be

adjusted from the command line such as for example: “nextflow run nf-core/phaseimpute -profile

test_stitch,singularity --k_val 3 --seed 3 --outdir results” to change the Stitch software main

parameters.

Fig 1: Overview of the “PhaseImpute” pipeline. One box per step of the pipeline (orange: pre-

processing of the panel, green: target files imputation, purple: simulation of low coverage WGS and

genotyping array data, grey: validation of imputed data)

Reference panel preparation and phasing:

The first step, named “panel_prep” (Fig 2) aims to compute the preprocessing required to prepare the

reference panel to be used for subsequent analyses. This step involves phasing the genotypes of

Genomic Variant Calling Format (GVCF) files into haplotypes and is performed using the Shapeit5 tools

“phase_common” and “ligate” using a sliding window generated using the “makewindows” tool from

bedtools [33]. Only “Shapeit5” is for the moment available as it is commonly used by the community

and by the 1000 Genome Project. For this task, users need to also provide the reference genome of

the studied species and optionally a genetic map to better determine the recombination rate along

the chromosomes. Next, the procedure involves conducting quality control measures. The phased

panel is first normalised and only the biallelic Single Nucleotide Polymorphisms (SNPs) are kept. These

quality control steps are inspired by the Glimpse 1 tutorial [29]. Depending on the tools selected by

the user, different secondary files are generated, which are necessary for the subsequent analyses.

Fig 2: Metro map of the pre-processing step of the panel. This step phases a reference panel (panel

.gvcf file), extracts the positions (from the Genome .fasta file) and chunks it using a genetic map

(Genome .map file) for the imputation process.

Imputation of the target individuals’ variants:

The second step, called “impute” (Fig 3), receives input in the form of BAM or VCF files listed in a CSV

sample sheet. The data can either come from WGS (BAM or VCF format) or from genotyping array (VCF

format). Variants are imputed using the different files produced in the pre-processing step and pre-

existing developed subworkflows accessible within the NF-Core community. Specifically, modules and

subworkflows for software tools such as Glimpse 1 and 2, Stitch and Quilt are readily available. The

data by chromosomes are then aggregated and the imputed vcf is the returned.

Fig 3: Metro map of the target file imputation step. This step imputes, with different softwares

selected by the user, the target BAM or VCF files using the output files of the panel pre-processing

and concatenate the chunks for each target individuals. The phased reference panel is optional for

the Stitch software.

Simulation and concordance analysis

Finally, the “simulate” and “validate” steps respectively enable the generation of sparse genetic data

from high-coverage whole genome sequence data and the comparison of imputed data with their

original counterpart. The simulation process, depicted in Fig 4, facilitates either down sampling files to

a specified mean coverage from high coverage sequencing or selecting specific SNP chip array positions

to simulate SNP chip data. The original high coverage WGS data are also processed with the “mpileup”

tool to create a ground “truth” variants file.

Fig 4: Metro map of the simulation step. This step allows the creation of simulated low coverageWGS

or genotyping array data from high coverage WGS (more than 20X). The SNP chip position file is

optional if the user only wants to simulate low coverage WGS data. The variants from the full data

are also computed using the bcftools “mpileup” process.

The “validate” step (Fig 5), conversely, uses the Glimpse 1 and 2 concordance tools to perform

statistical analysis. This step requires input from both the ground truth and the imputed data from the

simulated data. It then output a csv file recording the matching genotype rate.

Fig 5: Metro map of the validation step. A vcf file considered as the truth is here compared to the vcf

file imputed by the pipeline using the “concordance” tool of Glimpse.

Unit testing

Data set

The data set used for unit-testing comprises a reference panel phased variants files consisting of 860

variants on the chromosome 21 and 918 variants for the chromosome 22 for a total of 3,195

individuals. The reference genome employed is the Genome Reference Consortium Human Build 38

(GRCh38). Table 1 presents the statistical information obtained by the “coverage” tool of samtools for

the three individuals selected as targets for the test dataset.

Individuals Chr numreads covbases coverage meandepth meanbaseq meanmapq

NA12878 21 8475 40001 100 31.5299 29.6 59.7

22 8973 40001 100 33.1928 29.5 57.3

NA20359 21 8143 40000 99.9975 30.1806 29.3 59.8

22 8384 40001 100 30.9138 29.1 57.3

NA19401 21 8741 39996 99.9875 32.4854 29.6 59.8

22 8682 40001 100 32.0736 29.5 57.7

Table 1: Summary statistics of the three individuals selected for the region chr21: 16,57-16,61 Mb

and chr22: 16,57-16,61 Mb. numreads: Number reads aligned to the region (after filtering),

covbases: Number of covered bases with depth >= 1, coverage: Percentage of covered bases [0..100],

meandepth: Mean depth of coverage, meanbaseq: Mean baseQ in covered region, meanmapq:

Mean mapQ of selected reads.

Modules and subworkflows

The entire NF-Core community has recently opted to transition all their python test procedures to

Groovy-based test procedures available through the NF-test plugin. Each module and subworkflow

undergoes separate testing using the “PhaseImpute” test-dataset to ensure that each component

operates as intended. This new unit test workflow is structured such that each module includes all the

files that are needed for its execution and testing within its own folder. This organisational approach

improves visualisation and code debugging. A module is therefore organised as depicted in Fig 6.

modules / subworkflows:

 - local:

 - nf-core:

 - tool:

 - subtool:

 - tests:

 - main.nf.test # Process code for the unit tests

 - main.nf.test.snap # Snapshot of the expected results

 - nextflow.config # Configuration for the unit tests

 - tags.yml # Tags and path for the unit test

 - environment.yml # Environment file of the tool

 - main.nf # Process code

 - meta.yml # Documentation describing the tool

 - subtools.diff # Git diff text to patch modifications

Fig 6: NF-Core file organisation for modules and subworkflows with NF-test

The advantage of such an organisation is the ability to directly test a module or a subworkflow with

the simple following command:

nf-core <modules/subworflows> test tool/subtool

--profile <singularity/docker/conda>

This command will run the “main.nf.test” process and create a snapshot of the results if none are

available. The test will be run a second time to check its stability. An example of such an output can be

seen in Fig 7.

Fig 7: Output of nf-test tool for a nf-core module (bcftools / view) on the left and a section of the

snapshot generated through the test on the right.

Pipeline

The pipeline also features a test workflow that can be easily initiated using:

nextflow run nf-core/phaseimpute --profile test,<singularity/docker/conda>

--outdir results

This test uses the “PhaseImpute” test data set and currently executes the panel preparation step,

followed by the imputation of target files for the three selected individuals using the tool Glimpse 1

for the subregions of chromosomes 21 and 22. The output of this test can be seen in Fig 8.

Fig 8: Output of the test workflow of the “PhaseImpute” pipeline. A description of the parameters

used is first prompted (on the left) followed by the different steps (on the right).

Discussion

Using a dedicated workflow language such as Nextflow or Snakemake offers significant advantages for

processing high-throughput data seamlessly while ensuring high reproducibility [21,34]. The NF-Core

initiative, aimed at creating highly standardised tools, modules, subworkflows, workflows and

template empowers users to rapidly develop a high-quality pipeline. However, it is important to

acknowledge that learning the Nextflow language and adhering to the NF-Core guidelines requires

time and effort. Nonetheless, this investment allows for the creation of Findable, Accessible,

Interoperable, and Reusable (FAIR) workflows that are accessible to all.

By integrating each tool into the NF-Core repository, users access the latest versions, maintaining

cutting-edge workflows. Moreover, the repository's inclusion of pre-developed modules eliminates

redundant development. nf-core's guidelines ensure versatile tool usage through standardised input-

output architecture. The “nf-core” tool and GitHub Continuous Integration (CI) also facilitate tracking

of changes, linting and automatic testing all the processes and workflows. This ensures that the

pipeline remains robust and up to date. Archiving each version within Zenodo [35] enables

reproducibility of analyses even decades later, ensuring proper tools versioning, without, normally,

encountering any issues.

Looking ahead, the “PhaseImpute” pipeline holds promise for advancing genomic analyses further.

Future efforts will focus on integrating new features, refining existing functionalities, and adapting to

evolving needs of the rapidly growing field of genetic imputation. For example, a full-scale test will be

available using all the full chromosomes available from the 1000 Genome Project and information

about the CO2 footprint of the runs will be accessible through the integration of the nf-co2footprint

plugin. Community engagement will play a crucial role in shaping the pipeline's development

trajectory, fostering collaboration, and soliciting feedback from the broader bioinformatics

community. Benchmarking will be essential for evaluating the pipeline's CPU and memory usage,

providing insights into its efficiency and scalability across diverse computational environments. This

will be done with the first stable release through the integrated tools available through NF-Core and

the nf-co2footprint plugin.

To conclude, the “PhaseImpute” pipeline represents progress in genomic imputation and analysis. By

providing a standardised, reproducible, and community-supported solution, it contributes to

advancing genomic research. This work underscores the importance of collaborative efforts in

developing effective tools and workflows for the scientific community.

Availability and implementation

The “PhaseImpute” pipeline is accessible at https://nf-co.re/phaseimpute/dev. Although it is currently

under development, a stable release should be available in the coming months. The test dataset is

located in the “test-datasets” repository of the NF-Core community, specifically under its dedicated

branch, accessible at https://github.com/nf-core/test-datasets/tree/phaseimpute.

Acknowledgements

The authors express their gratitude to the NF-Core and Nextflow community for their efforts in

developing the NF-Core infrastructure and resources for Nextflow pipelines. A comprehensive list of

NF-Core community members can be found at https://nf-co.re/community. More particularly the

authors deeply thank Maxime Garcia, Anabella Trigila and Saul Pierotti for their contribution to the

pipeline and their reviews.

The authors also thank Anthony Herzig and Thomas Derrien for their careful review of this paper.

The authors extend theirs thanks to the GenOuest Bioinformatics of the University of Rennes for

generously providing the high-performance computing infrastructure.

Funding information

This work has been made possible by the funding of the Visio foundation and the partnership of the

guide dogs association: “Association les Chiens Guides d’Aveugles de l’Ouest”.

References

1. Li JH, Mazur CA, Berisa T, Pickrell JK. Low-pass sequencing increases the power of GWAS and decreases

measurement error of polygenic risk scores compared to genotyping arrays. Genome Res. 2021;31:529‑37.

2. Mazzonetto PC, Villela D, da Costa SS, Krepischi ACV, Milanezi F, Migliavacca MP, et al. Low-pass whole genome

sequencing is a reliable and cost-effective approach for copy number variant analysis in the clinical setting. Ann. Hum.

Genet. 2024;88:113‑25.

https://nf-co.re/phaseimpute/dev
https://github.com/nf-core/test-datasets/tree/phaseimpute
https://nf-co.re/community

3. Verlouw JAM, Clemens E, de Vries JH, Zolk O, Verkerk AJMH, am Zehnhoff-Dinnesen A, et al. A comparison of

genotyping arrays. Eur. J. Hum. Genet. 2021;29:1611‑24.

4. Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, Li H, et al. Extremely low-coverage sequencing and

imputation increases power for genome-wide association studies. Nat. Genet. 2012;44:631‑5.

5. Chat V, Ferguson R, Morales L, Kirchhoff T. Ultra Low-Coverage Whole-Genome Sequencing as an Alternative to

Genotyping Arrays in Genome-Wide Association Studies. Front. Genet. [Internet] 2022 [cité 2024 mars 15];12.

Available from: https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2021.790445

6. Lou RN, Jacobs A, Wilder AP, Therkildsen NO. A beginner’s guide to low-coverage whole genome sequencing for

population genomics. Mol. Ecol. 2021;30:5966‑93.

7. Delaneau O, Coulonges C, Zagury JF. Shape-IT: new rapid and accurate algorithm for haplotype inference. BMC

Bioinformatics 2008;9:540.

8. Marino AD, Mahmoud AA, Bose M, Bircan KO, Terpolovsky A, Bamunusinghe V, et al. A comparative analysis of

current phasing and imputation software. PLOS ONE 2022;17:e0260177.

9. Hofmeister RJ, Ribeiro DM, Rubinacci S, Delaneau O. Accurate rare variant phasing of whole-genome and whole-

exome sequencing data in the UK Biobank. Nat. Genet. 2023;1‑7.

10. Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data

imputation. Am. J. Hum. Genet. 2005;76:449‑62.

11. Fearnhead P, Donnelly P. Estimating recombination rates from population genetic data. Genetics 2001;159:1299‑318.

12. Lin S, Chakravarti A, Cutler DJ. Haplotype and missing data inference in nuclear families. Genome Res.

2004;14:1624‑32.

13. Niu T, Qin ZS, Xu X, Liu JS. Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am.

J. Hum. Genet. 2002;70:157‑69.

14. Loh PR, Danecek P, Palamara PF, Fuchsberger C, A Reshef Y, K Finucane H, et al. Reference-based phasing using the

Haplotype Reference Consortium panel. Nat. Genet. 2016;48:1443‑8.

15. Browning BL, Zhou Y, Browning SR. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J.

Hum. Genet. 2018;103:338‑48.

16. Rubinacci S, Delaneau O, Marchini J. Genotype imputation using the Positional Burrows Wheeler Transform. PLOS

Genet. 2020;16:e1009049.

17. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and

methods. Nat. Genet. 2016;48:1284‑7.

18. Davies RW, Kucka M, Su D, Shi S, Flanagan M, Cunniff CM, et al. Rapid genotype imputation from sequence with

reference panels. Nat. Genet. 2021;53:1104‑11.

19. Rubinacci S, Hofmeister RJ, Sousa da Mota B, Delaneau O. Imputation of low-coverage sequencing data from 150,119

UK Biobank genomes. Nat. Genet. 2023;1‑3.

20. Davies RW, Flint J, Myers S, Mott R. Rapid genotype imputation from sequence without reference panels. Nat. Genet.

2016;48:965‑9.

21. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible

computational workflows. Nat. Biotechnol. 2017;35:316‑9.

22. Cohen-Boulakia S, Belhajjame K, Collin O, Chopard J, Froidevaux C, Gaignard A, et al. Scientific workflows for

computational reproducibility in the life sciences: Status, challenges and opportunities. Future Gener. Comput. Syst.

2017;75:284‑98.

23. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated

bioinformatics pipelines. Nat. Biotechnol. 2020;38:276‑8.

24. Patel H, Ewels P, Peltzer A, Manning J, Botvinnik O, Sturm G, et al. nf-core/rnaseq: nf-core/rnaseq v3.14.0 - Hassium

Honey Badger [Internet]. 2024 [cité 2024 mars 15];Available from: https://zenodo.org/records/10471647

25. Garcia M, Juhos S, Larsson M, Olason PI, Martin M, Eisfeldt J, et al. Sarek: A portable workflow for whole-genome

sequencing analysis of germline and somatic variants [Internet]. 2020 [cité 2024 mars 15];Available from:

https://f1000research.com/articles/9-63

26. Benson D. Draw.io a JavaScript, client-side editor for general diagramming. [Internet]. 2024 [cité 2024 mai

23];Available from: https://github.com/jgraph/drawio

27. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global

reference for human genetic variation. Nature 2015;526:68‑74.

28. Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ, Regier AA, et al. High-coverage whole-genome sequencing

of the expanded 1000 Genomes Project cohort including 602 trios. Cell 2022;185:3426-3440.e19.

29. Delaneau O, Rubinacci S. GLIMPSE tutorial [Internet]. Genotype Likelihoods Imput. PhaSing MEthod GLIMPSE

Tutor. B382021 [cité 2024 mars 15];Available from: https://odelaneau.github.io/GLIMPSE/glimpse1/tutorial_b38.html

30. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for Whole-Genome

Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007;81:559‑75.

31. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools.

GigaScience 2021;10:giab008.

32. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a

single report. Bioinformatics 2016;32:3047‑8.

33. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma. Oxf. Engl.

2010;26:841‑2.

34. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, et al. Sustainable data analysis with

Snakemake [Internet]. 2021 [cité 2024 mars 15];Available from: https://f1000research.com/articles/10-33

35. Potter M, Smith T. Making code citable with Zenodo and GitHub. 2015 [cité 2024 mai 21];Available from:

https://zenodo.org/records/45042

