S4 class to represent the identity informations of the individuals in a pedigree.
Usage
# S4 method for class 'data.frame'
Ped(
obj,
cols_used_init = FALSE,
cols_used_del = FALSE,
date_pattern = "%Y-%m-%d"
)
# S4 method for class 'character_OR_integer'
Ped(
obj,
dadid,
momid,
sex,
famid = NA,
fertility = NA,
miscarriage = NA,
deceased = NA,
avail = NA,
evaluated = NA,
consultand = NA,
proband = NA,
affected = NA,
carrier = NA,
asymptomatic = NA,
adopted = NA,
dateofbirth = NA,
dateofdeath = NA,
missid = NA_character_,
useful = NA,
isinf = NA,
kin = NA_real_
)
Arguments
- obj
A character vector with the id of the individuals or a
data.frame
with all the informations in corresponding columns.- cols_used_init
Boolean defining if the columns that will be used should be initialised to NA.
- cols_used_del
Boolean defining if the columns that will be used should be deleted.
- date_pattern
The pattern of the date
- dadid
A vector containing for each subject, the identifiers of the biologicals fathers.
- momid
A vector containing for each subject, the identifiers of the biologicals mothers.
- sex
A character, factor or numeric vector corresponding to the gender of the individuals. This will be transformed to an ordered factor with the following levels:
male
<female
<unknown
The following values are recognized:
"male": "m", "male", "man",
1
"female": "f", "female", "woman",
2
"unknown": "unknown",
3
- famid
A character vector with the family identifiers of the individuals. If provide, will be aggregated to the individuals identifiers separated by an underscore.
- fertility
A character, factor or numeric vector corresponding to the fertility status of the individuals. This will be transformed to a factor with the following levels:
infertile_choice_na
,infertile
,fertile
The following values are recognized:
"inferile_choice_na" : "infertile_choice", "infertile_na"
"infertile" : "infertile", "steril",
FALSE
,0
"fertile" : "fertile",
TRUE
,1
,NA
- miscarriage
A character, factor or numeric vector corresponding to the miscarriage status of the individuals. This will be transformed to a factor with the following levels:
TOP
,SAB
,ECT
,FALSE
The following values are recognized:"SAB" : "spontaneous", "spontaenous abortion"
"TOP" : "termination", "terminated", "termination of pregnancy"
"ECT" : "ectopic", "ectopic pregnancy"
FALSE :
0
,FALSE
, "no",NA
- deceased
A logical vector with the death status of the individuals (i.e.
FALSE
= alive,TRUE
= dead,NA
= unknown).- avail
A logical vector with the availability status of the individuals (i.e.
FALSE
= not available,TRUE
= available,NA
= unknown).- evaluated
A logical vector with the evaluation status of the individuals. (i.e.
FALSE
= documented evaluation not available,TRUE
= documented evaluation available).- consultand
A logical vector with the consultand status of the individuals. A consultand being an individual seeking genetic counseling/testing (i.e.
FALSE
= not a consultand,TRUE
= consultand).- proband
A logical vector with the proband status of the individuals. A proband being an affected family member coming to medical attention independent of other family members. (i.e.
FALSE
= not a proband,TRUE
= proband).- affected
A logical vector with the affection status of the individuals (i.e.
FALSE
= unaffected,TRUE
= affected,NA
= unknown).- carrier
A logical vector with the carrier status of the individuals. A carrier being an individual who has the genetic trait but who is not likely to manifest the disease regardless of inheritance pattern (i.e.
FALSE
= not carrier,TRUE
= carrier,NA
= unknown).- asymptomatic
A logical vector with the asymptomatic status of the individuals. An asymptomatic individual being an individual clinically unaffected at this time but could later exhibit symptoms. (i.e.
FALSE
= not asymptomatic,TRUE
= asymptomatic,NA
= unknown).- adopted
A logical vector with the adopted status of the individuals. (i.e.
FALSE
= not adopted,TRUE
= adopted,NA
= unknown).- dateofbirth
A character vector with the date of birth of the individuals.
- dateofdeath
A character vector with the date of death of the individuals.
- missid
A character vector with the missing values identifiers. All the id, dadid and momid corresponding to those values will be set to
NA_character_
.- useful
A logical vector with the usefulness status of the individuals (i.e.
FALSE
= not useful,TRUE
= useful).- isinf
A logical vector indicating if the individual is informative or not (i.e.
FALSE
= not informative,TRUE
= informative).- kin
A numeric vector with minimal kinship value between the individuals and the informative individuals.
Details
The minimal needed informations are id
, dadid
,
momid
and sex
.
The other slots are used to store recognized informations.
Additional columns can be added to the Ped object and will be
stored in the elementMetadata
slot of the Ped object.
Slots
id
A character vector with the id of the individuals.
dadid
A character vector with the id of the father of the individuals.
momid
A character vector with the id of the mother of the individuals.
famid
A character vector with the family identifiers of the individuals (optional).
sex
An ordered factor vector for the sex of the individuals (i.e.
male
<female
<unknown
).fertility
A factor vector with the fertility status of the individuals (optional). (i.e.
infertile_choice_na
= no children by choice or unknown reason,infertile
= individual is inferile,fertile
= individual is fertile).miscarriage
A factor vector with the miscarriage status of the individuals (optional). (i.e.
TOP
= Termination of Pregnancy,SAB
= Spontaneous Abortion,ECT
= Ectopic Pregnancy,FALSE
= no miscarriage).deceased
A logical vector with the death status of the individuals (optional). (i.e.
FALSE
= alive,TRUE
= dead,NA
= unknown).avail
A logical vector with the availability status of the individuals (optional). (i.e.
FALSE
= not available,TRUE
= available,NA
= unknown).evaluated
A logical vector with the evaluation status of the individuals (optional). (i.e.
FALSE
= documented evaluation not available,TRUE
= documented evaluation available).consultand
A logical vector with the consultand status of the individuals (optional). A consultand being an individual seeking genetic counseling/testing (i.e.
FALSE
= not a consultand,TRUE
= consultand).proband
A logical vector with the proband status of the individuals (optional). A proband being an affected family member coming to medical attention independent of other family members. (i.e.
FALSE
= not a proband,TRUE
= proband).affected
A logical vector with the affection status of the individuals (optional). (i.e.
FALSE
= not affected,TRUE
= affected,NA
= unknown).carrier
A logical vector with the carrier status of the individuals (optional). A carrier being an individual who has the genetic trait but who is not likely to manifest the disease regardless of inheritance pattern (i.e.
FALSE
= not carrier,TRUE
= carrier,NA
= unknown).asymptomatic
A logical vector with the asymptomatic status of the individuals (optional). An asymptomatic individual being an individual clinically unaffected at this time but could later exhibit symptoms. (i.e.
FALSE
= not asymptomatic,TRUE
= asymptomatic,NA
= unknown).adopted
A logical vector with the adopted status of the individuals (optional). (i.e.
FALSE
= not adopted,TRUE
= adopted,NA
= unknown).dateofbirth
A date vector with the birth date of the individuals (optional).
dateofdeath
A date vector with the death date of the individuals (optional).
useful
A logical vector with the usefulness status of the individuals (computed). (i.e.
FALSE
= not useful,TRUE
= useful).isinf
A logical vector indicating if the individual is informative or not (computed). (i.e.
FALSE
= not informative,TRUE
= informative).kin
A numeric vector with minimal kinship value between the individuals and the useful individuals (computed).
num_child_tot
A numeric vector with the total number of children of the individuals (computed).
num_child_dir
A numeric vector with the number of children of the individuals (computed).
num_child_ind
A numeric vector with the number of children of the individuals (computed).
elementMetadata
A DataFrame with the additional metadata columns of the Ped object.
metadata
Meta informations about the pedigree.
Accessors
For all the following accessors, the x
parameters is a Ped object.
Each getters return a vector of the same length as x
with the values
of the corresponding slot. For each getter, you have a setter with the
same name, to be use as slot(x) <- value
.
The value
parameter is a vector of the same length as x
,
except for the mcols()
accessors where value
is a list
or a data.frame with each elements with the same length as x
.
id(x)
: Individuals identifiers
dadid(x)
: Individuals' father identifiers
momid(x)
: Individuals' mother identifiers
famid(x)
: Individuals' family identifiers
sex(x)
: Individuals' gender
fertility(x)
: Individuals' fertility status
miscarriage(x)
: Individuals' miscarriage status
deceased(x)
: Individuals' death status
avail(x)
: Individuals' availability status
evaluated(x)
: Individuals' evaluated status
consultand(x)
: Individuals' consultand status
proband(x)
: Individuals' proband status
carrier(x)
: Individuals' carrier status
asymptomatic(x)
: Individuals' asymptomatic status
adopted(x)
: Individuals' adopted status
affected(x)
: Individuals' affection status
dateofbirth(x)
: Individuals' birth dates
dateofdeath(x)
: Individuals' death dates
isinf(x)
: Individuals' informativeness status
kin(x)
: Individuals' kinship distance to the informative individuals
useful(x)
: Individuals' usefullness status
mcols(x)
: Individuals' metadata
Generics
summary(x)
: Compute the summary of a Ped object
show(x)
: Convert the Ped object to a data.frame and print it with its summary.
as.list(x)
: Convert a Ped object to a list with the metadata columns at the end.
as.data.frame(x)
: Convert a Ped object to a data.frame with the metadata columns at the end.
subset(x, i, del_parents = FALSE, keep = TRUE)
: Subset a Ped object based on the individuals identifiers given.i
: A vector of individuals identifiers to keep.del_parents
: A value indicating if the parents of the individuals should be deleted.keep
: A logical value indicating if the individuals should be kept or deleted.
Examples
data(sampleped)
Ped(sampleped)
#> Ped object with 55 individuals and 2 metadata columns:
#> id dadid momid famid sex fertility
#> col_class <character> <character> <character> <character> <ordered> <factor>
#> 101 101 <NA> <NA> 1 male fertile
#> 102 102 <NA> <NA> 1 female fertile
#> 103 103 135 136 1 male fertile
#> 104 104 <NA> <NA> 1 female fertile
#> 105 105 <NA> <NA> 1 male fertile
#> ... ... ... ... ... ... ...
#> 210 210 203 204 2 male fertile
#> 211 211 203 204 2 male fertile
#> 212 212 209 208 2 female fertile
#> 213 213 209 208 2 male fertile
#> 214 214 209 208 2 male fertile
#> miscarriage deceased avail evaluated consultand proband
#> col_class <factor> <logical> <logical> <logical> <logical> <logical>
#> 101 FALSE <NA> FALSE TRUE FALSE FALSE
#> 102 FALSE <NA> FALSE FALSE FALSE FALSE
#> 103 FALSE <NA> FALSE FALSE FALSE FALSE
#> 104 FALSE <NA> FALSE FALSE FALSE FALSE
#> 105 FALSE <NA> FALSE FALSE FALSE FALSE
#> ... ... ... ... ... ... ...
#> 210 FALSE <NA> FALSE FALSE FALSE FALSE
#> 211 FALSE <NA> TRUE FALSE FALSE FALSE
#> 212 FALSE <NA> TRUE FALSE FALSE FALSE
#> 213 FALSE <NA> FALSE FALSE FALSE FALSE
#> 214 FALSE <NA> TRUE FALSE FALSE FALSE
#> affected carrier asymptomatic adopted dateofbirth dateofdeath
#> col_class <logical> <logical> <logical> <logical> <character> <character>
#> 101 <NA> <NA> <NA> <NA> 1968-01-22 <NA>
#> 102 <NA> <NA> <NA> <NA> 1975-06-27 <NA>
#> 103 <NA> <NA> <NA> <NA> 1975-08-14 <NA>
#> 104 <NA> <NA> <NA> <NA> <NA> <NA>
#> 105 <NA> <NA> <NA> <NA> <NA> <NA>
#> ... ... ... ... ... ... ...
#> 210 <NA> <NA> <NA> <NA> <NA> <NA>
#> 211 <NA> <NA> <NA> <NA> <NA> <NA>
#> 212 <NA> <NA> <NA> <NA> <NA> <NA>
#> 213 <NA> <NA> <NA> <NA> <NA> <NA>
#> 214 <NA> <NA> <NA> <NA> <NA> <NA>
#> useful kin isinf num_child_tot num_child_dir
#> col_class <logical> <numeric> <logical> <numeric> <numeric>
#> 101 <NA> <NA> <NA> 1 1
#> 102 <NA> <NA> <NA> 1 1
#> 103 <NA> <NA> <NA> 4 4
#> 104 <NA> <NA> <NA> 4 4
#> 105 <NA> <NA> <NA> 4 4
#> ... ... ... ... ... ...
#> 210 <NA> <NA> <NA> 0 0
#> 211 <NA> <NA> <NA> 0 0
#> 212 <NA> <NA> <NA> 0 0
#> 213 <NA> <NA> <NA> 0 0
#> 214 <NA> <NA> <NA> 0 0
#> num_child_ind | affection num
#> col_class <numeric> <character> <character>
#> 101 0 0 2
#> 102 0 1 3
#> 103 0 1 2
#> 104 0 0 4
#> 105 0 <NA> 6
#> ... ... ... ...
#> 210 0 0 2
#> 211 0 0 1
#> 212 0 0 3
#> 213 0 0 2
#> 214 0 1 0
Ped(
obj = c("1", "2", "3", "4", "5", "6"),
dadid = c("4", "4", "6", "0", "0", "0"),
momid = c("5", "5", "5", "0", "0", "0"),
sex = c(1, 2, 3, 1, 2, 1),
missid = "0"
)
#> Ped object with 6 individuals and 0 metadata columns:
#> id dadid momid famid sex fertility
#> col_class <character> <character> <character> <character> <ordered> <factor>
#> 1 1 4 5 <NA> male fertile
#> 2 2 4 5 <NA> female fertile
#> 3 3 6 5 <NA> unknown fertile
#> 4 4 <NA> <NA> <NA> male fertile
#> 5 5 <NA> <NA> <NA> female fertile
#> 6 6 <NA> <NA> <NA> male fertile
#> miscarriage deceased avail evaluated consultand proband
#> col_class <factor> <logical> <logical> <logical> <logical> <logical>
#> 1 FALSE <NA> <NA> FALSE FALSE FALSE
#> 2 FALSE <NA> <NA> FALSE FALSE FALSE
#> 3 FALSE <NA> <NA> FALSE FALSE FALSE
#> 4 FALSE <NA> <NA> FALSE FALSE FALSE
#> 5 FALSE <NA> <NA> FALSE FALSE FALSE
#> 6 FALSE <NA> <NA> FALSE FALSE FALSE
#> affected carrier asymptomatic adopted dateofbirth dateofdeath
#> col_class <logical> <logical> <logical> <logical> <character> <character>
#> 1 <NA> <NA> <NA> <NA> <NA> <NA>
#> 2 <NA> <NA> <NA> <NA> <NA> <NA>
#> 3 <NA> <NA> <NA> <NA> <NA> <NA>
#> 4 <NA> <NA> <NA> <NA> <NA> <NA>
#> 5 <NA> <NA> <NA> <NA> <NA> <NA>
#> 6 <NA> <NA> <NA> <NA> <NA> <NA>
#> useful kin isinf num_child_tot num_child_dir
#> col_class <logical> <numeric> <logical> <numeric> <numeric>
#> 1 <NA> <NA> <NA> 0 0
#> 2 <NA> <NA> <NA> 0 0
#> 3 <NA> <NA> <NA> 0 0
#> 4 <NA> <NA> <NA> 3 2
#> 5 <NA> <NA> <NA> 3 3
#> 6 <NA> <NA> <NA> 3 1
#> num_child_ind
#> col_class <numeric>
#> 1 0
#> 2 0
#> 3 0
#> 4 1
#> 5 0
#> 6 2